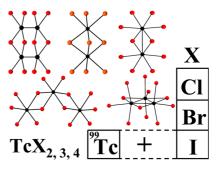


Recent Advances in Technetium Halide Chemistry


FREDERIC POINEAU,[†] ERIK V. JOHNSTONE,[†] KENNETH R. CZERWINSKI,[†] AND ALFRED P. SATTELBERGER^{*, †, ‡}

⁺Department of Chemistry, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States, and ⁺Energy Engineering and Systems Analysis Directorate, Argonne National Laboratory, Argonne, Illinois 60439, United States

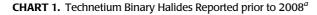
RECEIVED ON SEPTEMBER 15, 2013

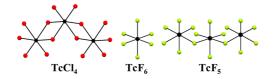
CONSPECTUS

T ransition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF₆, TcF₅, and TcCl₄. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas

reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr₄, TcBr₃, α/β -TcCl₂, α/β -TcCl₂, and Tcl₃.

Technetium tetrachloride and tetrabromide are isostructural to PtX₄ (X = Cl or Br) and consist of infinite chains of edge-sharing TcX₆ octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β -TcCl₃, TcBr₃, and Tcl₃) and to rhenium (α -TcCl₃). Technetium tribromide and triiodide exhibit the Til₃ structure-type and consist of infinite chains of face-sharing TcX₆ (X = Br or I) octahedra. Concerning the trichlorides, β -TcCl₃ crystallizes with the AlCl₃ structure-type and consists of infinite layers of edge-sharing TcCl₆ octahedra, while α -TcCl₃ consists of infinite layers of Tc₃Cl₉ units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc₂Cl₈] units.

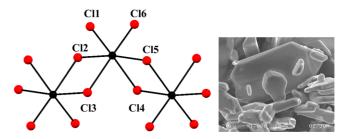

For the technetium binary halides, we studied the metal—metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d³ (Tc(IV)) to d⁵ (Tc(II)) is accompanied by the formation of metal—metal bonds in the coordination polyhedra. There is no metal—metal interaction in TcX₄, a Tc=Tc double bond is present in α/β -TcCl₃, and a Tc=Tc triple bond is present in α/β -TcCl₂.


We investigated the thermal behavior of these binary halides in sealed tubes under vacuum at elevated temperature. Technetium tetrachloride decomposes stepwise to α -TcCl₃ and β -TcCl₂ at 450 °C, while β -TcCl₃ converts to α -TcCl₃ at 280 °C. The technetium dichlorides disproportionate to Tc metal and TcCl₄ above \sim 600 °C. At 450 °C in a sealed Pyrex tube, TcBr₃ decomposes to Na{[Tc₆Br₁₂]₂Br}, while Tcl₃ decomposes to Tc metal.

We have used technetium tribromide in the preparation of new divalent complexes; we expect that the other halides will also serve as starting materials for the synthesis of new compounds (e.g., complexes with a Tc_3^{9+} core, divalent iodide complexes, binary carbides, nitrides, and phosphides, etc.). Technetium halides may also find applications in the nuclear fuel cycle; their thermal properties could be utilized in separation processes using halide volatility. In summary, we hope that these new insights on technetium binary halides will contribute to a better understanding of the chemistry of this fascinating element.

Introduction

Technetium is the lightest radioelement and the last transition metal to be discovered. The study of simple Tc binary halides is essential to a thorough understanding of the chemistry of this element; it is also relevant to nuclear and medical applications, for example, the development of waste form materials for safe long-term disposal and imaging agents for nuclear medicine.^{1,2} Prior to 2008, only


^{*a*}Color of atoms: Tc in black, Cl in red, and F in yellow.

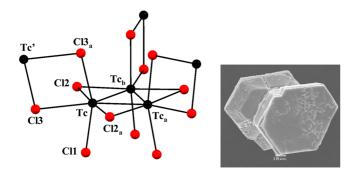
three Tc binary halides were well characterized: TcF_6 , TcF_5 , and $TcCl_4$ (Chart 1); today, ten phases are known. Historically, the first technetium binary halide to be reported was $TcCl_4$ in 1957.³ Its structure was solved in 1965, and $TcCl_4$ was the first tetrahalide of group 7 to be structurally characterized.⁴ The discovery of $TcCl_4$ was followed by that of TcF_6 in 1961⁵ and TcF_5 in 1963;⁶ both fluorides were obtained from the reaction of Tc metal and F_2 gas. The structure of the hexafluoride consists of molecular TcF_6 octahedra, while TcF_5 consists of infinite chains of corner-sharing TcF_6 octahedra.

The absence of Tc(III) binary chlorides, bromides, and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium.⁷ The trichloride had been observed in the gas phase (as Tc₃Cl₉) but its preparation in weighable amounts was unsuccessful.⁸ Technetium tribromide⁹ and TcBr₄¹⁰ were reported, but their structures were not elucidated. The synthetic strategies commonly used to obtain binary halides of neighboring elements, for example, stoichiometric reaction between the elements in a sealed tube and flowing gas reactions between a preformed dimer and HX gas (X = CI, Br, or I) had not been reported for technetium.¹¹ Using these strategies, we investigated the synthesis of technetium chlorides, bromides, and iodides; over the past five years, we have reported seven new technetium phases, TcBr₄, TcBr₃, α/β -TcCl₃, α/β -TcCl₂, and Tcl₃, and prepared several additional compounds (e.g., $Na{[Tc_6Br_{12}]_2}Br$) derived from these phases. Here, we review the preparation, structure, and properties of technetium binary halides and compare their chemistry to neighboring element analogues.

Technetium Chlorides

Tetrachloride. Technetium tetrachloride can be prepared in a sealed glass tube from the elements (Tc/Cl, 1:6) at 450 °C.¹² The structure of TcCl₄ consists of infinite chains of edge-sharing TcCl₆ octahedra (Figure 1). The large Tc···Tc separation within the chain (i.e., 3.6048(3) Å) precludes any metal–metal interaction. Technetium was the first element

FIGURE 1. (left) Ball and stick representation of the structure of TcCl₄. Color of atoms: Tc in black and Cl in red. Selected distances (Å): Tc-Cl1 = 2.2379(6); Tc-Cl2 = 2.3786(6); Tc-Cl3 = 2.4825(6); Tc-Cl4 = 2.4791(6); Tc-Cl5 = 2.3806(6); Tc-Cl6 = 2.2355(6). (right) Scanning electron microscopy (SEM) image of TcCl₄.


where the "TcCl₄ structure-type" was observed. Similar to technetium, the tetrachlorides of Zr,¹³ Hf,¹⁴ and Pt¹⁵ adopt the TcCl₄ structure-type. In those tetrachlorides, the M–M separations within the chains suggest little or no interaction between neighboring metal ions. Concerning technetium's nearest neighbors, β -ReCl₄ consists of infinite chains of Re₂Cl₉ bioctahedra,¹⁶ α -MoCl₄¹⁷ consists of infinite chains of MoCl₆ edge-sharing octahedra, and β -MoCl₄¹⁸ consists of infinite layers of MoCl₆ edge-sharing octahedra; RuCl₄ is unknown.

Technetium tetrachloride is a red, slightly hygroscopic solid; it can be kept for a week in air without noticeable decomposition. The compound is soluble in THF and CH_3CN and hydrolyzes to TcO_2 in water. The compound has been used as a precursor in the synthesis of molecular Tc(IV) chloro complexes.¹⁹

The magnetic properties of TcCl₄ have been measured, and its effective moment ($3.76 \mu_B$) is similar to that expected for an isolated Tc^{IV}Cl₆ octahedron ($3.87 \mu_B$) and consistent with the absence of a significant metal–metal interactions within the chains.

The thermal behavior of TcCl₄ was studied under flowing argon and in a sealed tube under vacuum. Experiments under flowing argon at 250–500 °C only resulted in the volatilization of the starting material. Experiments in sealed tubes under vacuum at 450 °C indicate that TcCl₄ successively decomposes to α -TcCl₃ and β -TcCl₂.¹²

The Trichloride System: α-TcCl₃ and β-TcCl₃. The compound α-TcCl₃ can be obtained by thermal decomposition of TcCl₄ under vacuum or by reaction between Tc₂(O₂CCH₃)₄Cl₂ and flowing HCl(g) at 300 °C.²⁰ The reaction of Tc₂(O₂CCH₃)₄Cl₂ with HCl(g) is the method of choice for production of weighable amounts of α-TcCl₃; during this reaction, a color change from pink to green (~100 °C) and then black (~250 °C) was noted. Analyses of the green compound showed the product to be Tc₂(O₂CCH₃)₂Cl₄ while the black amorphous compound was

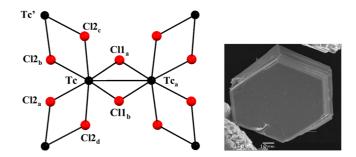


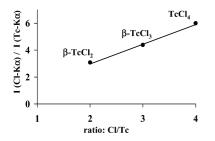
FIGURE 2. (left) Ball and stick representation of the structure of α -TcCl₃. Color of atoms: Tc in black and Cl in red. Selected distances (Å): Tc-Cl1 = 2.238(2); Tc-Cl2_a = Tc-Cl3_a = 2.373(2); Tc-Cl3 = 2.585(2); Tc-Tc_(a,b) = 2.444(1); Tc-Tc' = 3.852(1). (right) SEM image of α -TcCl₃.

identified as α -TcCl₃.²¹ The mechanism of formation of α -TcCl₃ mimics the one described for rhenium;²² the dimers $M_2(O_2CCH_3)_2Cl_4$ (M = Tc or Re) are formed as intermediates in the early stage of the reaction, after which rhenium and technetium trichlorides are formed at 340 and 300 °C, respectively.

α-TcCl₃ consists of infinite layers of Tc₃Cl₉ units and is isostructural to ReCl₃. In the Tc₃Cl₉ unit (Figure 2), the Tc atoms form an equilateral triangle with Tc–Tc distances of 2.444(1) Å. This distance is 0.045 Å shorter than the Re–Re distance in ReCl₃ and is indicative of a Tc=Tc double bond. The Tc₃Cl₉ units are linked by the Cl atoms and the Tc···Tc' distance between Tc₃Cl₉ units (3.852(1) Å) precludes any metal–metal interaction. Chemical bonding in the Tc₃Cl₉ cluster has been analyzed, and the results confirms the presence of a Tc=Tc double bonds within the Tc₃⁹⁺ core.²³ Occupation number calculations of the Tc=Tc bond indicated the presence of 1.99 electrons in both the *σ* and *π* orbitals, which indicates an effective bond order of 2.

The compound β -TcCl₃ was obtained from the sealed tube reaction between Tc metal and chlorine (Tc/Cl ratio, 1:2.5) at 450 °C for 24 h.²⁴ Following the reaction, a dark powder containing technetium metal and TcCl₂ was obtained in the hottest part of the tube, β -TcCl₂ needles in the center portion, and a dark colored product (containing TcCl₄ and β -TcCl₃) in the coldest end. To the best of our knowledge, technetium is the only transition metal where three binary chloride phases in different oxidation states (i.e., TcCl₄, TcCl₃, and TcCl₂) are formed congruently from the reaction of the elements. Individual reactions of the neighboring second-row elements, molybdenum and ruthenium, with one equivalent of chlorine at 450 °C provide the trivalent chloride and unreacted metal. For rhenium, the pentachloride is the main reaction product of Re metal and

FIGURE 3. (left) Ball and stick representation of the structure of β -TcCl₃. Color of atoms: Tc in black and Cl in red. Selected distances (Å): Tc-Tc_a = 2.861(3); Tc-Tc' = 3.601(2); Tc-Cl1_(a,b) = 2.316(3); Tc-Cl2_(a,b) = 2.434(3); Tc-Cl2_(c,d) = 2.403(2); Cl1_a-Cl1_b = 3.642(4). (right) SEM image of β -TcCl₃.


chlorine at 500–700 °C.^{7a} The absence of measurable amounts of α -TcCl₃ or β -TcCl₃ is due to the instability of theses phases at 450 °C (*vide infra*).

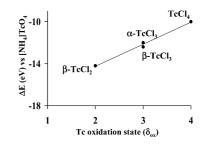
β-TcCl₃ consists of infinite layers of edge-sharing TcCl₆ octahedra (Figure 3) and is isostructural to α-MoCl₃.²⁵ Within a layer, coupling of Tc atoms into Tc₂⁶⁺ pairs occurs and two sets of Tc–Tc distances are observed (i.e., Tc–Tc=2.861(3) Å, Tc···Tc' = 3.601(2) Å). The Tc–Tc distance in the Tc₂⁶⁺ pair indicates a significant metal–metal bonding interaction, while the Tc···Tc' distance is similar to the nonbonded one in TcCl₄ (i.e., 3.6048(3) Å). The calculated effective bond order of the Tc–Tc bond in the Tc₂⁶⁺ unit (i.e., 1.38) is consistent with the presence of a weak double bond; the Tc=Tc bond is clearly stronger in α-TcCl₃ than in β-TcCl₃.

In the other layered trichlorides, strong coupling between metal atoms occurs in α -MoCl₃ but not in α -RuCl₃.²⁶ The disparity (Δ MM, in Å) between paired and nonpaired metal—metal distances in layered MCl₃ (M = Mo, Tc, or Ru) follows the order Δ MoMo (0.957(4)) > Δ TcTc (0.740(3)) > Δ RuRu (0.01(1)), and a Peierls distortion is likely the origin of formation of M₂⁶⁺ units.

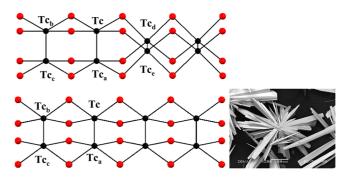
Amorphous α -TcCl₃ is readily soluble in concentrated aqueous HCl and in acetone; the compound is stable in air for a week without decomposition. The thermal properties of α/β -TcCl₃ have been investigated in a sealed tube under vacuum. Both trichlorides are unstable; β -TcCl₃ is converted to α -TcCl₃ after 16 days at 280 °C, while α -TcCl₃ decomposes to β -TcCl₂ and Tc metal after 12 h at 450 °C. The conversion of β -TcCl₃ to α -TcCl₃ is consistent with calculations that predict β -TcCl₃ to be energetically less stable than α -TcCl₃.²⁴

Among second- and third-row transition metal trichlorides, polymorphism has been observed for molybdenum, ruthenium, and rhodium.²⁷ Technetium and ruthenium are the only elements where one trichloride phase can be converted to another in the solid state.²⁸ The behavior of the

FIGURE 4. Plot of the intensity [Cl K α]/intensity [Tc K α] for β -TcCl₂, β -TcCl₃, and TcCl₄.


technetium trichlorides contrasts with that of Re₃Cl₉ and α -MoCl₃. Rhenium trichloride volatilizes as the Re₃Cl₉ cluster, and no decomposition has been reported.²⁹ α -MoCl₃ disproportionates to the dichloride and the tetrachloride.

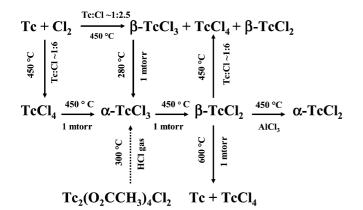
The Dichloride System: α**-TcCl₂ and** β**-TcCl₂.** Technetium dichloride can be obtained by reaction between the elements at elevated temperature or by thermal decomposition of TcCl₄ or α-TcCl₃ under vacuum at 450 °C.^{30,31} For the first route, single crystals of β-TcCl₂, β-TcCl₃, and TcCl₄ were congruently obtained (*vide supra*). The β-TcCl₂ needles that were located in the center part of the tube were used for the structure determination. The dark powder containing technetium metal and TcCl₂ was sealed in a tube with AlCl₃, and α-TcCl₂ single crystals were obtained after four days at 450 °C.


The composition of β -TcCl₂ was analyzed by energy dispersive X-ray (EDX) spectroscopy, and its structure and oxidation state were analyzed by X-ray absorption fine structure spectroscopy.³² During our study on Tc binary halides, these two techniques have proven very useful in determining stoichiometries and the oxidation state of the Tc atoms, respectively. The correlation between the Cl/Tc ratio and the intensity of [Cl K α]/intensity of [Tc K α] can be plotted from the EDX data (Figure 4), while the oxidation state of Tc absorption edge³³ (Figure 5).

Both β -TcCl₂ and α -TcCl₂ exhibit new structure-types that consist of infinite chains of eclipsed [Tc₂Cl₈] units (Figure 6). In the [Tc₂Cl₈] units, the average Tc–Cl distances for β -TcCl₂ (i.e., 2.398(3) Å) are slightly larger than that for α -TcCl₂ (i.e., 2.372(9)) and the Tc–Tc separations (2.136(3) for β -TcCl₂ and 2.127(2) for α -TcCl₂) are indicative of a Tc=Tc triple bond (*vide infra*).³⁴

In a β -TcCl₂ chain, two orientations of the Tc=Tc bonds in the [Tc₂Cl₈] unit are observed: the Tc=Tc bonds of two adjacent [Tc₂Cl₈] units are either parallel or perpendicular (Figure 6), and the orientation of the Tc=Tc bonds changes every two [Tc₂Cl₈] units. The distances between Tc=Tc

FIGURE 5. Chemical shift, ΔE (eV), of Tc K-edge relative to NH₄TcO₄ versus formal oxidation state for β -TcCl₂, α/β -TcCl₃, and TcCl₄.


FIGURE 6. Ball-and-stick representation of portions of β -TcCl₂ (top) and α -TcCl₂ (bottom) chains. Color of atoms: Tc in black and Cl in red. Selected distances (Å) in β -TcCl₂: Tc-Tc_a = 2.136(3); Tc-Tc_b = 3.425(2); Tc-Tc_c = 4.037(3); Tc-Tc_(d,e) = 3.744(2). Selected distances (Å) in α -TcCl₂: Tc-Tc_a = 2.127(2); Tc-Tc_b = 3.417(2); Tc-Tc_c = 4.025(2). (right) SEM image of β -TcCl₂.

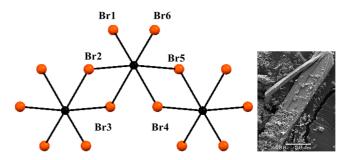
bonds of parallel (i.e., 3.425(2) Å) and perpendicular $[Tc_2Cl_8]$ units (i.e., 3.744(2) Å) preclude any metal–metal interaction between adjacent units.

In α -TcCl₂, only one orientation of the Tc=Tc bonds is observed, and the Tc=Tc vectors of adjacent units are parallel. The distances between Tc atoms of the adjacent units (i.e., 3.417(2) Å) also preclude any metal-metal interaction.

The metal–metal separations in α/β -TcCl₂ are similar to those observed in a number of Tc(II) dinuclear complexes and are consistent with the presence of a metal–metal triple bond.³⁵ Further quantification of the metal–metal bonding is provided by first-principles calculations of the natural bond orbital (NBO) occupancy of the Tc–Tc bond; the results indicate a NBO of 5.30, which is close to the value expected for a triple bond (i.e., 6.00). In β -TcCl₂, the Tc=Tc triple bond should exhibit the $\sigma^2 \pi^4 \delta^2 \delta^{*2}$ configuration, which is in agreement with the experimental diamagnetism of the compound (*vide infra*).

Among the second- and third-row transition metals, α -TcCl₂ and β -TcCl₂ are, respectively, the 11th and 12th dichloride phases to be structurally characterized. Transition metal dichlorides can be classified into one of four

FIGURE 7. Mechanism of formation of technetium binary chlorides. Solid arrow, sealed tube reaction; dotted arrow, flowing gas reaction.

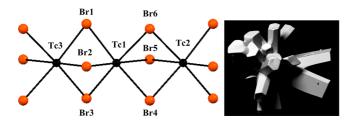

categories, namely, those composed of $[M_2Cl_8]$ units $(\alpha/\beta - TcCl_2 \text{ and }\beta - MoCl_2)$, those composed of square planar MCl_4 units $(\alpha/\beta/\gamma/\delta - PdCl_2^{36} \text{ and } \alpha/\beta - PtCl_2^{37})$, those containing $[M_6Cl_8]^{4+}$ hexanuclear clusters (α -MoCl_2 and WCl_2),²⁵ and ZrCl_2.³⁸ We note that ReCl_2 and RuCl_2 have yet to be synthesized, although both elements form a variety of divalent mononuclear or dinuclear compounds.^{7b}

Technetium dichloride crystals are stable in air and can be kept for a year without any evidence of decomposition. The β -TcCl₂ needles are insoluble in common organic solvents and aqueous HCl at ambient temperature. No reactions occur between TcCl₂ powder and neat PMe₃. The compound is thermally unstable and disproportionates to Tc metal and TcCl₄ in a sealed tube at or above 600 °C. The formation mechanism of the various technetium binary chloride phases as well as their decomposition products is summarized in Figure 7.

The magnetic and transport properties of technetium dichloride were investigated.³¹ Magnetic susceptibility measurements indicate TcCl₂ is diamagnetic, which is consistent with the presence of Tc=Tc triple bonds. The transport properties were studied by diffuse reflectance spectroscopy and electrical resistivity measurements. The diffuse reflectance measurement yields a band gap of 0.12(2) eV, which suggests that the compound is a narrow band gap semiconductor. Resistivity and Seebeck measurements indicate β -TcCl₂ to be a p-type semiconductor. The experimental results are in agreement with the calculated band structure of β -TcCl₂, which predicts semiconductor behavior with an indirect gap of ~0.5 eV.

Technetium Bromides

Tetrabromide. Technetium tetrabromide single crystals were obtained in a sealed glass tube from the elements at


FIGURE 8. (left) Ball and stick representation of the structure of TcBr₄. Color of atoms: Tc in black and Br in orange. Selected distances (Å): Tc-Br1 = 2.3966(3); Tc-Br2 = 2.5253(4); Tc-Br3 = 2.6263(3); Tc-Br4 = 2.6205(3); Tc-Br5 = 2.5259(4); Tc-Br6 = 2.3941(4); Tc-Tc = 3.7914(4). (right) SEM image of TcBr₄.

400 °C (Tc/Br ratio, 1:4) for 6 h.³⁹ After the reaction, an XRD analysis of the powder showed the presence of Tc metal, TcBr₄, and TcBr₃. Two subsequent treatments of the resulting powder with excess bromine (Tc/Br, 1:6) at 400 °C were required to isolate single-phase, crystalline TcBr₄.⁴⁰ Technetium tetrabromide (Figure 8) has the TcCl₄ structure-type and is isostructural to PtBr₄⁴¹ and OsBr₄.⁴² In a TcBr₄ chain, the metal–metal separation (i.e., 3.7914(4) Å) precludes metal–metal interaction.

The coordination chemistry of transition metal tetrabromides is less well developed than that of the tetrachlorides. Among the second-row transition metals, only ZrBr₄, NbBr₄, and TcBr₄ have been structurally characterized. Concerning Tc neighboring elements, ReBr₄⁴³ and MoBr₄⁴⁴ have been reported but not structurally characterized, while RuBr₄ is unknown.

Technetium tetrabromide is slightly hygroscopic; it can be kept in dry air for weeks without degrading. It is slightly soluble in tetrahydrofuran and dichloromethane. The magnetic properties of TcBr₄ have been measured, and the compound is paramagnetic ($3.4 \mu_B$). The thermal behavior of TcBr₄ was investigated in a sealed tube under vacuum at 450 °C. The compound is unstable under these conditions and yields two products, namely, TcBr₃ and single crystals of an unusual technetium(II) cluster with the composition Na{[Tc₆Br₁₂]₂Br} (*vide infra*).

Tribromide. Technetium tribromide can be obtained by the reaction of Tc metal and Br₂ (Tc/Br ratio, ~1:3) in a sealed tube at 400 °C or via the reaction between Tc₂(O₂CCH₃)₄Cl₂ and flowing HBr gas at 300 °C.^{39,45} Technetium tribromide obtained from the reaction of Tc₂(O₂CCH₃)₄Cl₂ and HBr(g) has the same structure (Til₃ structure-type) as the material obtained by direct combination of the elements. It was hoped that the reaction between Tc₂(O₂CCH₃)₄Cl₂ and HBr(g) would mimic the rhenium system and provide Tc₃Br₉.⁴⁶

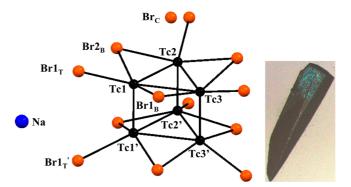
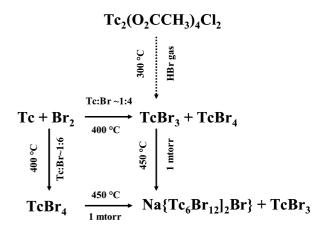


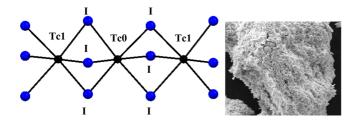
FIGURE 9. (left) Ball and stick representation of the structure of TcBr₃. Color of atoms: Tc in black and Br in orange. Selected distances (Å): Tc(1,3)-Br1 = 2.4869(6); Tc(1,3)-Br2 = 2.4945(8); Tc(1,3)-Br3 = 2.4869(6); Tc(1,2)-Br4 = 2.5197(6); Tc(1,2)-Br5 = 2.5300(8); Tc(1, 2)-Br6 = 2.5197(6); Tc1-Tc2 = 3.1434(4); Tc1-Tc3 = 2.8283(4). (right) SEM image of TcBr₃.


Technetium tribromide (Figure 9) consists of infinite chains of face-sharing TcBr₆ octahedra and is isostructural with RuBr₃ and MoBr₃.⁴⁷ In a TcBr₃ chain, a regular alternation of short (2.8283(4) Å) and long (3.1434(4) Å) Tc–Tc distances is observed. This metal–metal coupling is common for TiI₃-type structures. The disparity between paired and nonpaired metal–metal distances is comparable to the observed couplings for MoBr₃ (d³) or RuBr₃ (d⁵); the disparity (Δ MM in Å) between the M–M and M···M distances follows the order Δ RuRu = 0.395(4) > Δ TcTc = 0.3151(6) > Δ MoMo = 0.329(4).

Technetium tribromide is air stable and can be kept for several years without decomposition. It is soluble in tetrahydrofuran and has been used as a precursor in the preparation of two new divalent compounds, *trans*-TcBr₂(PMe₃)₄ and $[Tc_2Br_4(PMe_3)_4]$.⁴⁸ The magnetic properties of TcBr₃ have been measured, and the compound is paramagnetic. Technetium tribromide is thermally unstable and decomposes to Tc metal and Na{ $[Tc_6Br_{12}]_2Br$ } in a sealed tube under vacuum at 450 °C.

In Search of Technetium Dibromide. Because technetium tri- and tetrachloride decompose to TcCl₂, it was expected that TcBr₂ would result from the thermal decomposition of TcBr₄ and TcBr₃, which is not the case. Rather, TcBr₄ and TcBr_3 both decompose to $\mathsf{Na}\{[\mathsf{Tc}_6\mathsf{Br}_{12}]_2\mathsf{Br}\}$ in a sealed Pyrex tube under vacuum at 450 °C.⁴⁰ In Na{[Tc₆Br₁₂]₂Br, the hexanuclear [Tc₆Br₁₂] cluster exhibits a trigonal prismatic geometry and is composed of two identical parallel Tc_3Br_6 units linked by multiple Tc=Tc bonds (Figure 10). Thermal decomposition of TcBr₄ and TcBr₃ performed in a quartz tube did not provide a crystalline product, which suggests that the source of the sodium in the compound originates from the Pyrex tube. Questions remain on whether TcBr₂ is accessible by thermal decomposition and whether its structure is a "naked" Tc₆Br₁₂ cluster or one similar to TcCl₂. The formation mechanism of the

FIGURE 10. (left) Ball and stick representation of Na{ $[Tc_6Br_{12}]_2Br$ }. Color of atoms: Tc in black, Br in orange, and Na in blue. Selected distances (Å): Tc1-Tc2 = 2.6879(5); Tc1-Tc3 = 2.6735(5); Tc2-Tc3 = 2.6776(5); Tc1-Tc1'= 2.1651(5); Tc2-Tc2' = 2.1779(5); Tc3-Tc3'= 2.1776(5); Tc1-Br1_T = 2.5216(8); Tc1-Br2_B = 2.4819(7); Tc1-Br_c = 3.0994(4). (right) Optical image of a single crystal of Na{ $[Tc_6Br_{12}]_2Br}$.


FIGURE 11. Mechanism of formation of binary technetium bromides. Solid arrow, sealed tube reaction; dotted arrow, flowing gas reaction.

various technetium bromide phases as well as their decomposition products is summarized in Figure 11.

Technetium Iodides

Triiodide. Technetium triiodide has been obtained by two methods: the reaction between $Tc_2(O_2CCH_3)_4Cl_2$ and flowing HI gas and the reaction between the elements in sealed tubes.⁴⁵ Concerning the first method, technetium triiodide was obtained from the reaction of $Tc_2(O_2CCH_3)_4Cl_2$ with HI at 150 and 300 °C. In the second method, the reaction of Tc metal and I₂ (Tc/I ratio, 1:3) was investigated in sealed tubes at 250 and 400 °C. The reaction products were studied by powder XRD, which revealed that no reaction occurred at 250 °C, while Tcl₃ was observed after 2 weeks at 400 °C. The XRD powder pattern of Tcl₃ obtained in the sealed tube reaction at 400 °C matches the one obtained from the flowing gas reactions.

The technetium triiodide powder obtained from the flowing gas reaction is semicrystalline; attempts to grow single

FIGURE 12. (left) Ball and stick representation of the structural motif in Tcl_3 . Color of atoms: Tc in black and I in blue. Selected distances (Å): TcO-Tc1 = 3.10(3) and TcO-I = 2.67(3). (right) SEM image of Tcl_3 .

crystals were unsuccessful, and the structure of Tcl₃ was analyzed by extended X-ray absorption fine structure (EXAFS) spectroscopy. Our analysis of the EXAFS data on Tcl₃ (Figure 12) is consistent with the presence of face-sharing Tcl₆ octahedra, indicating that Tcl₃ adopts the Til₃ structure-type. Concerning Tc neighboring elements, Mol₃ and Rul₃ also exhibit the Til₃ structure-type, while Rel₃ consists of Re₃l₉ clusters. This finding shows that the heavier halides of Tc(III) tend to mimic their Mo(III) and Ru(III) homologues.⁴⁹

Technetium triiodide is not hydroscopic but slowly releases iodine at room temperature. It is insoluble in acetone, dichloromethane, HCl_{aq} , ether, hexane, and water. Attempts to prepare Tcl_2 from the thermal decomposition of Tcl_3 were unsuccessful; the decomposition of Tcl_3 in a sealed tube under vacuum at 450 °C produced Tc metal.

Conclusion

Technetium binary halides can now be regarded as one the most prolific systems in transition metal binary halide chemistry. Ten phases exhibiting eight different structuretypes are now known. The structure-types include a molecular solid (TcF₆), chains (TcF₅, TcCl₄, TcBr₄, TcBr₃, Tcl₃, and α/β -TcCl₂), layers (β -TcCl₃), and bidimensional networks containing metal-halide clusters (α -TcCl₃). These halides can also be categorized as those having the structure of platinum tetrachloride (TcCl₄ and TcBr₄), those having the structure of its Re counterpart (TcF₆, TcF₅, and α -TcCl₃) or Mo/Ru (Tcl₃, TcBr₃, and β -TcCl₃), and those with a new structure-type (α -TcCl₂ and β -TcCl₂). In the chloride system, the change of the electronic configuration of the metal atom from d^3 (Tc(IV)) to d^5 (Tc(II)) is accompanied by formation of metal-metal bonds in the coordination polyhedra. In the tetrahalide, there is no appreciable metal-metal interaction, a Tc=Tc double bond is observed in α/β -TcCl₃, and a Tc=Tc triple bond is observed in α/β -TcCl₂. In the trivalent state, the heavier halides (Br and I) of technetium are isostructural to their Mo and Ru homologues. Technetium halides exhibit a

Technetium halides will find applications as precursors in synthetic chemistry. Technetium tribromide has already been used in the preparation of new divalent complexes, and it is expected that similar complexes will be obtained from Tcl₃. Rhenium and molybdenum trichlorides have been used in the synthesis of complexes with the triangular Re₃⁹⁺ core and in the preparation of Mo binary carbides, nitrides, or phosphides, respectively; it is expected that α -TcCl₃ and β -TcCl₃ should also lead to the formation of similar compounds. Technetium halides are also candidates for applications in the fuel cycle and for the development of Tc waste forms (i.e., TcCl₂); their thermal properties could potentially be utilized in separation processes via halide volatility.

Unknown binary Tc halides are certainly waiting to be discovered: those might include TcF_n (n = 4, 7), $TcCl_n$ (n = 5, 6), and $TcBr_5$. Calculations predict TcF_4^{50} and TcF_7^{51} to be stable; these compounds could be obtained by the methods used for the preparation of ReF_4^{52} and ReF_7^{53} Technetium hexachloride, $TcCl_5$, and $TcBr_5$ could be obtained using similar synthetic routes for preparing $ReCl_6$, ⁵⁴ $OsCl_5$, ⁵⁵ and $ReBr_5$, ⁵⁶ respectively. However, in view of the unpredictable nature of Tc halide chemistry (sometimes a mimic for Re, Mo, or Ru, or sometimes unique), it is risky to make predictions on the nature and structure of these yet-to-be-discovered compounds. It is also surprising and encouraging for chemists that new binary halides are still being discovered in the 21st century.

Funding for this research was provided by an NEUP grant from the U.S. Department of Energy, Office of Nuclear Energy, through INL/BEA, LLC, 00129169, agreement No. DE-AC07-05ID14517. Use of the Advanced Photon Source at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank Dr. Tom O' Dou, Mr. Trevor Low, and Ms. Julie Bertoia for outstanding health physics support and our many talented collaborators whose names appear in the references.

BIOGRAPHICAL INFORMATION

Frederic Poineau is a research professor in the Radiochemistry Program at the University of Nevada Las Vegas (UNLV). From 2001 to 2004, he performed his doctoral studies at the laboratory Subatech (Nantes, France) on technetium chemistry. In 2005, he moved to UNLV where he conducted his postdoctoral research. His current research interests include synthesis and coordination chemistry of technetium complexes with multiple metal-metal bonds, technetium binary materials, and speciation of technetium complexes. He is also interested in the chemistry of technetium for nuclear fuel cycle applications, that is, separations and development of waste forms.

Erik V. Johnstone attended the College of Charleston from 2004 to 2009 where he received two Bachelor of Science degrees in biochemistry and chemistry. In 2009, he began graduate studies in Radiochemistry at UNLV under the supervision of Professors Kenneth R. Czerwinski, Alfred P. Sattelberger, and Frederic Poineau. The focus of his graduate thesis has been on the synthesis and characterization of binary technetium halides, which has also included studies on multiple metal–metal bonded complexes and metal alloys of transition metals and actinides.

Kenneth R. Czerwinski obtained his Ph.D. in nuclear chemistry from the University of California, Berkeley, in 1992. He was a research scientist at the Institute for Radiochemistry in Munich and then a faculty member in nuclear engineering at the Massachusetts Institute of Technology. Since 2004, he has directed the UNLV Radiochemistry Program. His current research is centered on understanding the chemical speciation and coordination of actinides and technetium compounds for exploratory and applied studies. His fundamental research focuses on coordination chemistry and evaluating electronic structure.

Alfred P. Sattelberger was educated at Rutgers College (B.A., Chemistry, 1970) and obtained a Ph.D. in Inorganic Chemistry from Indiana University in 1975. He was the recipient of an NSF Postdoctoral Fellowship at Case Western Reserve University, where he worked with Professor John P. Fackler, Jr. (1975–1977). After serving in positions in the Chemistry Department at the University of Michigan (1977–1984) and at Los Alamos National Laboratory (1984–2006), he joined Argonne National Laboratory as an Associate Laboratory Director in 2006. He holds adjunct faculty appointments in Chemistry at both UNLV and Northwestern University and his research interests include actinide and fission product chemistry.

FOOTNOTES

The authors declare no competing financial interest.

REFERENCES

- (a) Alberto, R. In *Comprehensive Coordination Chemistry II*, McCleverty, J. A., Mayer, T. J., Eds.; Elsevier: Amsterdam, 2003; Vol. 5, Chapter 2. (b) Alberto, R.; Braband, H.; N'Dongo, H. W. P. Towards Small Molecule Labelling with ^{99m}Tc. *Curr. Radiopharm.* 2009, *2*, 254–267.
- 2 Poineau, F.; Mausolf, E.; Jarvinen, G. D.; Sattelberger, A. P.; Czerwinski, K. R. Technetium Chemistry in the Fuel Cycle: Combining Basic and Applied Studies. *Inorg. Chem.* 2013, *52*, 3573–3578.
- 3 Knox, K.; Tyree, S. Y., Jr.; Srivastava, R. D.; Norman, V.; Bassett, J. Y., Jr.; Holloway, J. H. Chemistry of Rhenium and Technetium. I. Synthesis of ReCl₅, TcCl₄ and Related. *J. Am. Chem. Soc.* **1957**, *79*, 3358–3361.
- 4 (a) Elder, M.; Penfold, B. R. The Crystal Structure of Technetium(IV) Chloride. *Chem. Commun.* **1965**, 308–309. (b) Elder, M.; Penfold, B. R. The Crystal Structure of Technetium(IV) Chloride; A New AB₄ Structure. *Inorg. Chem.* **1966**, *5*, 1197–1200.
- 5 Selig, H.; Chemick, C. L.; Malm, J. G. J. The Preparation and Properties of TcF₆. *Inorg. Nucl. Chem.* **1961**, *119*, 377–381.
- 6 Edwards, A. J.; Hugill, D.; Peacock, R. D. New Fluorine Compounds of Technetium. *Nature* 1963, 200, 672.

- 7 (a) Canterford, J. H.; Colton, R. Halides of the Second and Third Row Transition Metals; John Wiley and Sons: New York, 1968. (b) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; John Wiley and Sons: New York, 1999.
- 8 Rinke, K.; Klein, M.; Schaefer, H. Massenspektrometrische Untersuchungen an Halogeniden des Rheniums und Technetiums. J. Less-Common Met. 1967, 12, 497–503.
- 9 Miroslavov, A. E.; Borisova, I. V.; Sidorenko, G. V.; Suglobov, D. N. Reaction of Tetrametic Tricarbonylhalides of Technetium with Free Halides. Sov. Radiochem. 1991, 33, 615–618.
- 10 (a) Fergusson, J. E.; Hickford, J. H. Studies in the Chemistry of Technetium; Complexes of Technetium-(II), -(III), and -(IV) with 1,2-Bis(diphenylphosphino)ethane. *Aust. J. Chem.* **1970**, *23*, 453–461. (b) Abram, U.; Wollert, R.; Hiller, W. The Synthesis of New Tc(IV) Complexes from TcCl₄. *Radiochim. Acta.* **1993**, *63*, 145–147.
- Walton, R. A. Higher Nuclearity Rhenium Halide Clusters that Contain Re–Re Multiple Bonds. J. Clust. Sci. 2004, 15, 559–588.
- 12 Johnstone, E. V.; Poineau, F.; Forster, P. M.; Ma, L.; Hartmann, T.; Cornelius, A.; Antonio, D.; Sattelberger, A. P.; Czerwinski, K. R. Technetium Tetrachloride Revisited: A Precursor to Lower-Valent Binary Technetium Chlorides. *Inorg. Chem.* **2012**, *51*, 8462–8467.
- 13 Krebs, B. The Crystal Structure of Zirconium(IV) Chloride: A New AB₄-type Structure. Angew. Chem., Int. Ed. 1969, 8, 146–147.
- 14 Niewa, R.; Jacobs, H. Crystal Structure of Hafnium(IV) Chloride, HfCl₄. Z. Kristallogr. 1995, 210, 687.
- 15 Pilbrow, M. F. Crystal Structure of Platinum Tetrachloride. J. Chem. Soc., Chem. Commun. 1972, 5, 270–271.
- 16 Cotton, F. A.; DeBoer, B. G.; Mester, Z. The Chemistry of Rhenium(IV) Chloride. II. Structure of One of the Polymorphs (β) and Evidence for a New Polymorph (γ). *J. Am. Chem. Soc.* **1972**, *95*, 1159–1163.
- 17 Kepert, D. L.; Mandyczewsky, R. α-Molybdenum Tetrachloride. A Structural Isomer Containing Molybdenum–Molybdenum Interactions. *Inorg. Chem.* **1968**, *7*, 2091–2093.
- 18 Müller, U. Hexameres Molybdäntetrachlorid. Angew. Chem. 1981, 93, 697-698.
- 19 Hagenbach, A.; Yegan, E.; Abram, U. Technetium Tetrachloride as a Precursor for Small Technetium(IV) Complexes. *Inorg. Chem.* 2006, 45, 7331–7338.
- 20 Poineau, F.; Johnstone, E. V.; Weck, P. F.; Kim, E.; Forster, P. M.; Scott, B. L.; Sattelberger, A. P.; Czerwinski, K. R. Synthesis and Structure of Technetium Trichloride. *J. Am. Chem. Soc.* **2010**, *132*, 15864–15685.
- 21 Poineau, F.; Johnstone, E. V.; Forster, P. M.; Ma, L.; Sattelberger, A. P.; Czerwinski, K. R. Probing the Presence of Multiple Metal—Metal Bonds in Technetium Chlorides by X-ray Absorption Spectroscopy: Implications for Synthetic Chemistry. *Inorg. Chem.* 2012, *51*, 9563–9570.
- 22 Esjornson, S. N.; Fanwick, P. E.; Walton, R. A. The Intermediacy of Re₂(O₂CCH₃)₂Cl₄ in the Conversion of Re₂(O₂CCH₃)₄Cl₂ to Re₃Cl₉. *Inorg. Chim. Acta* **1989**, *162*, 165–166.
- 23 Weck, P. F.; Sergeeva, A. P.; Kim, E.; Boldyrev, A. I.; Czerwinski, K. R. Chemical Bonding and Aromaticity in Trinuclear Transition-Metal Halide Clusters. *Inorg. Chem.* 2011, *50*, 1039–1046.
- 24 Poineau, F.; Johnstone, E. V.; Weck, P. F.; Forster, P. M.; Kim, E.; Czerwinski, K. R.; Sattelberger, A. P. β-Technetium Trichloride: Formation, Structure, and First-Principles Calculations. *Inorg. Chem.* **2012**, *51*, 4915–4917.
- 25 Schaefer, H.; Schnering, H. G.; Tillack, J.; Kuhnen, F.; Woehrle, H. T.; Baumann, H. Neue Uatersuchungen uber die Chloride des Molybdans. Z. Anorg. Allg. Chem. **1967**, 353, 281–310.
- 26 Stroganov, E. V.; Ovchinnikov, K. V. Crystal Structure of Ruthenium Trichloride. Vestn. Leningrad. Univ. 1957, 12, 152–157.
- 27 Lin, J.; Miller, G. J. Dimensional Diversity in Transition Metal Trihalides. *Inorg. Chem.* 1993, 32, 1476–1487.
- 28 Hyde, K. R.; Hooper, E. W.; Waters, J.; Fletcher, J. M. α- and β-Ruthenium Trichloride. J. Less-Common Met. 1965, 8, 428–434.
- 29 (a) Christodoulakis, A.; Maronitis, C.; Boghosian, S. Rhenium(III) Chloride Vaporisation and Vapor Complexation in the Rhenium(III) Chloride-Aluminium(III) Chloride System. *Phys. Chem. Chem. Phys.* **2001**, *3*, 5208–5212. (b) Frais, P. W.; Guest, A.; Lock, C. J. L. Preparation of β -Rhenium Tetrachloride. *Can. J. Chem.* **1969**, *47*, 1069–1072.
- 30 Poineau, F.; Malliakas, C. D.; Weck, P. F.; Scott, B. L.; Johnstone, E. V.; Forster, P. M.; Kim, E.; Kanatzidis, M. G.; Czerwinski, K. R.; Sattelberger, A. P. Technetium Dichloride: A New Binary Halide Containing Metal-Metal Multiple Bonds. *J. Am. Chem. Soc.* **2011**, *133*, 8814–8817.
- 31 Malliakas, C. D.; Poineau, F.; Johnstone, E. V.; Weck, P. F.; Kim, E.; Scott, B. L.; Forster, P. M.; Kanatzidis, M. G.; Czerwinski, K. R.; Sattelberger, A. P. β-Technetium Dichloride: Solid-State Modulated Structure, Electronic Structure and Physical Properties. *J. Am. Chem. Soc.* **2013**, *135*, 15955–15962.
- 32 Poineau, F.; Johnstone, E. V.; Weck, P. F.; Kim, E.; Conradson, S. D.; Sattelberger, A. P.; Czerwinski, K. R. On the Structure of β -Molybdenum Dichloride. *Inorg. Chem.* **2012**, *51*, 4965–4971.
- 33 Poineau, F.; Johnstone, E. V.; Sattelberger, A. P.; Czerwinski, K. R. Characterization of TcCl₄ and β-TcCl₃ by X-ray Absorption Fine Structure Spectroscopy. J. Radioanal. Nucl. Chem. 2013, DOI: 10.1007/s10967-013-2743-0.

- 34 Pyykko, P.; Atsumi, M. Molecular Double-Bond Covalent Radii for Elements Li—E112. *Chem.*—*Eur. J.* **2009**, *15*, 12770–12779.
- 35 Sattelberger, A. P. Technetium. In *Multiple Bonds between Metal Atoms*, 3rd ed.; Cotton, F. A., Murillo, C. A., Walton, R. A., Eds.; Springer: New York, 2005; Chapter 7.
- 36 Evers, J.; Beck, W.; Göbel, M.; Jakob, S.; Mayer, P.; Oehlinger, G.; Rotter, M.; Klapötke, T. M. The Structures of δ -PdCl₂ and γ -PdCl₂: Phases with Negative Thermal Expansion in One Direction. *Angew. Chem., Int. Ed.* **2010**, *49*, 5677–5682.
- 37 Krebs, B.; Brendel, C.; Schäfer, H. Neue Untersuchungen an α-Platindichlorid Darstellung und Struktur. Z. Anorg. Allg. Chem. 1988, 561, 119–131.
- 38 Cisar, A.; Corbett, J. D.; Daake, R. L. The Zirconium Dichloride Phase Region: Synthesis, Structure, and Photoelectron Spectral Studies of 3R-ZrCl₂, 6T-Zr_{1.05}Cl₂, and Related Phases. *Inorg. Chem.* **1979**, *18*, 836–843.
- 39 Poineau, F.; Rodriguez, E. E.; Forster, P. M.; Sattelberger, A. P.; Cheetham, A. K.; Czerwinski, K. R. Preparation of the Binary Technetium Bromides: TcBr₃ and TcBr₄. J. Am. Chem. Soc. 2009, 131, 910–911.
- 40 Johnstone, E. V.; Grant, D. J.; Poineau, F.; Fox, L.; Forster, P. M.; Ma, L.; Gagliardi, L.; Czerwinski, K. R.; Sattelberger, A. P. A Trigonal Prismatic Hexanuclear Technetium(II) Bromide Cluster: Solid-State Synthesis, Crystallographic and Electronic Structure. *Inorg. Chem.* **2013**, *52*, 5660–5662.
- 41 Thiele, G.; Woditsch, P. Platinum(III) Bromide: A New Structural Type of AB₃ Compounds. Angew. Chem., Int. Ed. 1969, 8, 672–673.
- 42 Thiele, G.; Wochner, H.; Wagner, H. Osmium Bromides. Z. Anorg. Allg. Chem. 1985, 530, 178–186.
- 43 Mueller, H.; Waschinski, R. γ-Rhenium (IV) Chloride, Dirhenium Octachloride-Hexachloropropene, Rhenium (IV) Bromide. *Inorg. Nucl. Chem. Lett.* 1972, *8*, 413–415.
- 44 Calderazzo, F.; Maichle-Mossmer, C.; Pampaloni, G.; Straehle, J. Low-Temperature Syntheses of Vanadium(III) and Molybdenum(IV) Bromides by Halide Exchange. *J. Chem. Soc., Dalton Trans.* **1993**, *5*, 655–658.
- 45 Johnstone, E. V.; Poineau, F.; Starkey, J.; Hartmann, T.; Forster, P. M.; Ma, L.; Hilger, J.; Rodriguez, E. E.; Farmand, R.; Czerwinski, K. R.; Sattelberger, A. P. Synthetic and

Coordination Chemistry of the Heavier Trivalent Technetium Binary Halides: Uncovering Technetium Triiodide. *Inorg. Chem.* **2013**, *52*, 14309–14316.

- 46 Glicksman, H. D.; Hamer, A. D.; Smith, T. J.; Walton, R. A. Studies on Metal Carboxylates. 12. Reactions of Molybdenum(II), Rhodium(II), and Rhenium(III) Acetates with Gaseous Hydrogen Chloride and Hydrogen Bromide. *Inorg. Chem.* **1976**, *15*, 2205–2209.
- 47 Merlino, S.; Labella, L.; Marchetti, F.; Toscani, S. Order-Disorder Transformation in RuBr₃ and MoBr₃: A Two-Dimensional Ising Model. *Chem. Mater.* 2004, *16*, 3895–3903.
- 48 Poineau, F.; Weck, P. F.; Forster, P. M.; Sattelberger, A. P.; Czerwinski, K. R. Synthesis, Structure, and First-principles Calculations of [TcBr₂(PMe₃)₄] and [Tc₂Br₄(PMe₃)₄] Complexes. *Dalton Trans.* **2009**, *46*, 10338–10342.
- 49 (a) Lewis, J.; Machin, D. J.; Nyholm, R. S.; Pauling, P.; Smith, P. W. Preparation and Properties of Molybdenum Triiodide. *Chem. Ind.* **1960**, 259–260. (b) Schnering, H. G.; Brodersen, K.; Moers, F.; Breitbach, H. K.; Thiele, G. Structures of β -RuCl₃, RuBr₃, and Rul₃. *J. Less-Common Met.* **1966**, *11*, 288–289.
- 50 Weck, P. F.; Kim, E.; Poineau, F.; Rodriguez, E.; Sattelberger, A. P.; Czerwinski, K. R. Novel Technetium(IV) Halide Polymeric Compounds Predicted from First-Principles. *Inorg. Chem.* 2009, 48, 6555–6558.
- 51 Riedel, S.; Renz, M.; Kaupp, M. High-Valent Technetium Fluorides: Does TcF₇ Exist? Inorg. Chem. 2007, 46, 5734–5738.
- 52 Casteel, W. J.; Lohmann, D. H.; Bartlett, N. Room Temperature Preparation of Second and Third Transition Series Tetrafluorides and a Possible Novel Structure Type for OsF₄ and RhF₄. *J. Fluorine Chem.* **2001**, *112*, 165–171.
- 53 Johnson, R. L.; Siegel, B. On the Synthesis of ReF₇ and the Existence of ReF₂ and ReF₃. *J. Inorg. Nucl. Chem.* **1969**, *31*, 2391–2396.
- 54 Tamadon, F.; Seppelt, K. The Elusive Halides VCl₅, MoCl₆, and ReCl₆. *Angew. Chem., Int. Ed.* **2013**, *52*, 767–769.
- 55 Burns, R. C.; ODonnell, T. A. Preparation and Characterization of Osmium Pentachloride: A New Binary Chloride of Osmium. *Inorg. Chem.* **1979**, *18*, 3081–3086.
- 56 Canterford, J. H.; Waugh, A. B. Preparation and Characterization of Rhenium Hexachloride and Rhenium Pentabromide. *Inorg. Nucl. Chem. Lett.* **1971**, *7*, 395–399.